Definable Ellipsoid Method, Sums-of-Squares Proofs, and the Isomorphism Problem

نویسندگان

  • Albert Atserias
  • Joanna Ochremiak
چکیده

The ellipsoid method is an algorithm that solves the (weak) feasibility and linear optimization problems for convex sets by making oracle calls to their (weak) separation problem. We observe that the previously known method for showing that this reduction can be done in fixed-point logic with counting (FPC) for linear and semidefinite programs applies to any family of explicitly bounded convex sets. We use this observation to show that the exact feasibility problem for semidefinite programs is expressible in the infinitary version of FPC. As a corollary we get that, for the isomorphism problem, the Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations collapses to the Sherali-Adams linear programming hierarchy, up to a small loss in the degree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidefinite Characterization of Sum-of-Squares Cones in Algebras

We extend Nesterov’s semidefinite programming characterization of squared functional systems to cones of sum-of-squares elements in general abstract algebras. Using algebraic techniques such as isomorphism, linear isomorphism, tensor products, sums and direct sums, we show that many concrete cones are in fact sum-of-squares cones with respect to some algebra, and thus representable by the cone ...

متن کامل

Minimum Ellipsoid Bounds for Solutions of Polynomial Systems via Sum of Squares

Abstract. We study ellipsoid bounds for the solutions (x,μ)∈Rn×Rr of polynomial systems of equalities and inequalities. The variable μ can be considered as parameters perturbing the solution x. For example, bounding the zeros of a system of polynomials whose coefficients depend on parameters is a special case of this problem. Our goal is to find minimum ellipsoid bounds just for x. Using theore...

متن کامل

Definable isomorphism problem

We investigate the isomorphism problem in the setting of definable sets (equivalent to sets with atoms): given two definable relational structures, are they related by a definable isomorphism? Under mild assumptions on the underlying structure of atoms, we prove decidability of the problem. The core result is parameter-elimination: existence of an isomorphism definable with parameters implies e...

متن کامل

On the Bit Complexity of Sum-of-Squares Proofs

It has often been claimed in recent papers that one can find a degree d Sum-of-Squares proof if one exists via the Ellipsoid algorithm. In [16], Ryan O’Donnell notes this widely quoted claim is not necessarily true. He presents an example of a polynomial system with bounded coefficients that admits low-degree proofs of non-negativity, but these proofs necessarily involve numbers with an exponen...

متن کامل

Sums of Squares, Moment Matrices and Optimization over Polynomials

We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equations and inequalities, which is NP-hard in general. Hierarchies of semidefinite relaxations have been proposed in the literature, involving positive semidefinite moment matrices and the dual theory of sums of squares of polynomials. We present these hierarchies of approximations and their main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.02388  شماره 

صفحات  -

تاریخ انتشار 2018